Shehnaz Jamil1, Shair Ahmad2, Rukhsana Nazir1,1Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan.2Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.*Corresponding email: stepahmad01@gmail.com; shehnazjamiluaf@gmail.com
Submitted | Accepted | Published |
---|---|---|
May 03,2022 | Jun 30,2022 | Jun 30,2022 |
2022 / Vol: 5 / Issue: 1
Abstract
Salinity limits the production capabilities of agricultural soils in large areas of the world. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmo-protectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for enhancement of resistance against salt stress.
Key words: Biotechnological tools, Genome editing, Crop Improvement
Reference
- Raza, A., Tabassum, J., Fakhar, A. Z., Sharif, R., Chen, H., Zhang, C., ... & Varshney, R. K. (2022). Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 1-28.
- FAO. FAO land and plant nutrition management service. Available online at: http://www.fao.org/ag/agl/agll/spush/. Accessed 25 April 2008; 2008.
- Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience, 67(4), 386-391.
- Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2), 34.
- Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant biology, 21, 31-38.
- Unicef, & WHO, W. (2020). Levels and trends in child malnutrition: key findings of the 2019 edition of the Joint Child Malnutrition Estimates. Geneva: World Health Organization.
- Parvez, S., Abbas, G., Shahid, M., Amjad, M., Hussain, M., Asad, S. A., ... & Naeem, M. A. (2020). Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and environmental safety, 187, 109814.
- Hessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H., & Cruz, C. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 139, 171-178.
- F Ehtaiwesh, A., & H Rashed, F. (2020). Growth and yield responses of Libyan hard wheat (Triticum durum desf) genotypes to salinity stress.
- Chattopadhyay, K., Mohanty, S. K., Vijayan, J., Marndi, B. C., Sarkar, A., Molla, K. A., ... & Sarkar, R. K. (2021). Genetic dissection of component traits for salinity tolerance at reproductive stage in rice. Plant Molecular Biology Reporter, 39(2), 386-402.
- PAKNEJAD, F., RAZAJİ, A., MOAREFİ, M., DAMGHANİ, A. M., & ILKAEE, M. N. (2019). Meta-analysis of the Effects of Salinity Stress on Cotton (Gossypium spp.) Growth and Yield in Iran. Journal of Agricultural Sciences, 26(1), 94-103.
- Haroon, M., Wang, X., Afzal, R., Zafar, M.M., Idrees, F., Batool, M., Khan, A.S. and Imran, M., 2022a. Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. Plants, 11(8), p.1052.
- Haroon, M., Wang, X., Afzal, R., Zafar, M.M., Idrees, F., Batool, M., Khan, A.S. and Imran, M., 2022b. Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. Plants, 11(8), p.1052.
- Varshney, R. K., Sinha, P., Singh, V. K., Kumar, A., Zhang, Q., & Bennetzen, J. L. (2020). 5Gs for crop genetic improvement. Current Opinion in Plant Biology, 56, 190-196.
- Kaur G, Nelson K, Motavalli P (2018) Early-Season Soil Waterlogging and N Fertilizer Sources Impacts on Corn N Uptake and Apparent N Recovery Efficiency. Agronomy 8:102. https://doi.org/10.3390/agronomy8070102.
- Munns R, Day DA, Fricke W, et al. (2020) Energy costs of salt tolerance in crop plants. New Phytologist 225:1072–1090. https://doi.org/10.1111/nph.15864.
- Acosta-Motos J, Ortuño M, Bernal-Vicente A, et al. (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18.
- Soliman MH, Alayafi AA, El Kelish AA, Abu-Elsaoud AM (2018) Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Botanical studies 59:6.
- Sugai T, Yannan W, Watanabe T, et al. (2019) Salt Stress Reduced the Seedling Growth of Two Larch Species Under Elevated Ozone. Front For Glob Change 2:. https://doi.org/10.3389/ffgc.2019.00053.
- Soliman M, Elkelish A, Souad T, et al. (2020a) Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiology and Molecular Biology of Plants 26:501–511.
- Acosta-Motos J, Ortuño M, Bernal-Vicente A, et al. (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18.
- Kosová, K., Vítámvás, P., Urban, M. O., Prášil, I. T., & Renaut, J. (2018). Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Frontiers in plant science, 9, 122.
- Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature communications, 9(1), 1-13.
- Raza, A. (2020). Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Reports, 1-23.
25. Razzaq, A., Sadia, B., Raza, A., Khalid Hameed, M., & Saleem, F. (2019). Metabolomics: A way forward for crop improvement. Metabolites, 9(12), 303.
26. Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P., & Yang, B. (2011). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic acids research, 39(1), 359-372.
27. Khan, S. H. (2019). Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Molecular Therapy-Nucleic Acids, 16, 326-334.
- Bo, W., Zhaohui, Z., Huanhuan, Z. H. A. N. G., Xia, W. A. N. G., Binglin, L. I. U., Lijia, Y., ... & Yong, Z. (2019). Targeted mutagenesis of NAC transcription factor gene, OsNAC041, leading to salt sensitivity in rice. Rice Science, 26(2), 98-108.
- Bouzroud, S., Gasparini, K., Hu, G., Barbosa, M. A. M., Rosa, B. L., Fahr, M., ... & Zouine, M. (2020). Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes, 11(3), 272.
- Abdel-Farid, I. B., Marghany, M. R., Rowezek, M. M., & Sheded, M. G. (2020). Effect of Salinity Stress on Growth and MetabolomicProfiling of Cucumis sativus and Solanum lycopersicum. Plants, 9(11), 1626.
- Townsend JA, Wright DA, Winfrey RJ, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459(7245): 442–445.
- Gabriel, R., Lombardo, A., Arens, A., Miller, J. C., Genovese, P., Kaeppel, C., ... & Von Kalle, C. (2011). An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature biotechnology, 29(9), 816-823.
- Zafar MM, A Razzaq, MA Farooq, A Rehman, H Firdous, A Shakeel, H Mo, M Ren, M Ashraf and Y Youlu, 2020b. Genetic Variation Studies of Ionic and within Boll Yield Components in Cotton (Gossypium Hirsutum L.) Under Salt Stress. Journal of Natural Fibers.1-20.
- Zafar, MM , G Mustafa, F Shoukat, A Idrees, A Ali, F Sharif, A Shakeel et al., 2022b. Heterologous expression of cry3Bb1 and cry3 genes for enhanced resistance against insect pests in cotton. Scientific Reports.12(1): 1-11.
- Zafar, MM, A Manan, A Razzaq, M Zulfqar, A Saeed, M Kashif, A Iqbal Khan et al, 2021b. Exploiting Agronomic and Biochemical Traits to Develop Heat Resilient Cotton Cultivars under Climate Change Scenarios. Agronomy 11(9): 1885.
- Zafar, MM, A Razzaq, MA Farooq, A Rehman, H Firdous, A Shakeel, H Mo, And M Ren, 2020a. Insect resistance management in Bacillus thuringiensis cotton by MGPS (multiple genes pyramiding and silencing). Journal of Cotton Research 3(1): 1-13.
- Zafar, MM, A Rehman, A Razzaq, A Parvaiz, G Mustafa, F Sharif, H Mo, Y Youlu, A Shakeel, and M Ren 2022c. Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC plant biology. 22(1): 1-18.
- Zafar, MM, A Shakeel, M Haroon, A Manan, A Sahar, A Shoukat, H Mo, MA Farooq and M Ren, 2021c. Effects of Salinity Stress on Some Growth, Physiological, and Biochemical Parameters in Cotton (Gossypium hirsutum L.) Germplasm. Journal of Natural Fibers. 1-33.
- Zafar, MM, X Jia, A Shakeel, Z Sarfraz, A Manan, A Imran, H Mo et al. 2021a.Unraveling Heat Tolerance in Upland Cotton (Gossypium hirsutum L.) Using Univariate and Multivariate Analysis. Frontiers in Plant Science 12: 727835-727835.
- Zafar, MM, Y Zhang, MA Farooq, A Ali, H Firdous, M Haseeb, S Fiaz, A Shakeel, A Razzaq and M Ren, 2022a.Biochemical and Associated Agronomic Traits in Gossypium hirsutum L. under High Temperature Stress. Agronomy.12(6): 1310.