• The International Journal of Biological Research (TIJOBR)- Published Quarterly
  • The International Journal of Global Sciences (TIJOGS) -Published Quarterly

Diagnosis and Treatment Of Diseases By Using Metallic Nanoparticles- A Review

The International Journal of Global Sciences (TIJOGS)


Muneeza Muneer1, Shahzad Sharif Mughal1*, Sumaira Pervez1, Maryam Mushtaq1, Nageena Shabbir1

Asma Aslam1, Ali Raza Ayub2, Saqib Shafique2, Faheem Abbas2

1Department of chemistry, Lahore Garrison University, Lahore, Pakistan

2Department of chemistry, University of Agriculture, Faisalabad, Pakistan

*Corresponding author’s email: shezi1130@gmail.com

Submitted Accepted Published
Dec 28,2019 Jan 21,2020 Feb 10,2020

2020 / Vol: 3 / Issue: 1


Nanoscale materials that are found in many kinds at nano scale stage. Nanoparticles are vast class of material that contain small discrete mass of matter which have one particular range from 1-100nm. Nanoparticles are zero dimension, two dimensions and three dimensions etc. There are broad class of Nanoparticles which is used in disease diagnosis and treatment. Nanoparticles collaborated with the drug and increase the effectiveness of the target object. Surface of nanoparticles is modified with many agents and used in different disease. One of best purpose of nanoparticles is in drug delivery. Nanoparticles are not effective in human diseases but also helpful in plant disease. Different nanodevices like nanowires and cantilevers are very effective for gastrointestinal diseases. Specialists at Osaka University have joined nanopore sensors with man-made brainpower methods and showed that they can recognize single infection particles. This technique may give fast, purpose of utilization, ID of infections. A strategy for recognizing malignancy cells in the circulation system is being created utilizing nanoparticles called NanoFlares. The NanoFlares are structured tie to hereditary focuses in disease cells, and create light when that specific hereditary objective is found. Nanoparticles uses in different methods like MRI increased its efficiency for imaging. Many of imaging techniques like ultrasound imaging (USI), magnetic resonance imaging (MRI) and optical imaging (OI) ultrasound imaging (USI) for study of inside and outside study of human beings and others. There are different types of nanoparticles used in these techniques which help in vivo and vitro study. For treatment purpose, DNA vaccine coated SiO(LDH) nanoparticles induced antibody is used mostly. For this, nano spray recently discovered that picks up the insects. So, role of nanoparticles is effective. 

Key words: Diagnosis; cancer treatment; nanoparticles; quantum dots


1.             Laurent, S., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 2008. 108(6): p. 2064-2110.

2.             Dreaden, E.C., et al., The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 2012. 41(7): p. 2740-2779.

3.             Shin, W.-K., et al., Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO 2 nanoparticles for lithium-ion polymer batteries. Scientific reports, 2016. 6: p. 26332.

4.             Driskell, J.D., et al., Infectious agent detection with SERS-active silver nanorod arrays prepared by oblique angle deposition. IEEE Sensors Journal, 2008. 8(6): p. 863-870.

5.             Salame, P.H., V.B. Pawade, and B.A. Bhanvase, Characterization Tools and Techniques for Nanomaterials, in Nanomaterials for Green Energy. 2018, Elsevier. p. 83-111.

6.             Chirayil, C.J., et al., Instrumental techniques for the characterization of nanoparticles, in Thermal and Rheological Measurement Techniques for Nanomaterials Characterization. 2017, Elsevier. p. 1-36.

7.             Saeed, K. and I. Khan, Preparation and characterization of single-walled carbon nanotube/nylon 6, 6 nanocomposites. Instrumentation Science & Technology, 2016. 44(4): p. 435-444.

8.             Khlebtsov, N.G. and L.A. Dykman, Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010. 111(1): p. 1-35.

9.             Khan, I., et al., Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application. Ultrasonics sonochemistry, 2017. 36: p. 386-392.

10.           Iravani, S., Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011. 13(10): p. 2638-2650.

11.           Khan, I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2017.

12.           Bangham, A., M.M. Standish, and J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of molecular biology, 1965. 13(1): p. 238-IN27.

13.           Sanvicens, N. and M.P. Marco, Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends in biotechnology, 2008. 26(8): p. 425-433.

14.           Cuenca, A.G., et al., Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer, 2006. 107(3): p. 459-466.

15.           Ringsdorf, H. Structure and properties of pharmacologically active polymers. in Journal of Polymer Science: Polymer Symposia. 1975. Wiley Online Library.

16.           Nasimi, P. and M. Haidari, Medical use of nanoparticles: Drug delivery and diagnosis diseases. International Journal of Green Nanotechnology, 2013. 1: p. 1943089213506978.

17.           Leroux, J.-C., et al., Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery. Journal of Controlled Release, 1996. 39(2-3): p. 339-350.

18.           Kircher, M.F., et al., A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer research, 2003. 63(23): p. 8122-8125.

19.           Klippstein, R. and D. Pozo, Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(4): p. 523-529.

20.           Baghaban-Eslaminejad, M., et al., The role of nanomedicine, nanotechnology, and nanostructures on oral bone healing, modeling, and remodeling, in Nanostructures for Oral Medicine. 2017, Elsevier. p. 777-832.

21.           Ikoba, U., et al., Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale, 2015. 7(10): p. 4291-4305.

22.           Rai, M., et al., Strategic role of selected noble metal nanoparticles in medicine. Critical reviews in microbiology, 2016. 42(5): p. 696-719.

23.           Chun, Y.W., et al., Therapeutic application of nanotechnology in cardiovascular and pulmonary regeneration. Computational and structural biotechnology journal, 2013. 7(8): p. e201304005.

24.           Ambesh, P., et al., Nanomedicine in coronary artery disease. Indian heart journal, 2017. 69(2): p. 244-251.

25.           Riegler, J., et al., Superparamagnetic iron oxide nanoparticle targeting of MSCs in vascular injury. Biomaterials, 2013. 34(8): p. 1987-1994.

26.           Kong, F.-Y., et al., Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 2017. 22(9): p. 1445.

27.           Kim, E.-Y., et al., Gold nanoparticle-mediated gene delivery induces widespread changes in the expression of innate immunity genes. Gene therapy, 2012. 19(3): p. 347.

28.           Zhang, C., et al., Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice. Biomaterials, 2014. 35(1): p. 456-465.

29.           Melancon, M.P., W. Lu, and C. Li, Gold-based magneto/optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. MRS bulletin, 2009. 34(6): p. 415-421.

30.           Thorek, D.L. and A. Tsourkas, Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials, 2008. 29(26): p. 3583-3590.

31.           Kumar, A., B.M. Boruah, and X.-J. Liang, Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. Journal of Nanomaterials, 2011. 2011: p. 22.

32.           Jiang, W., et al., Nanoparticle-mediated cellular response is size-dependent. Nature nanotechnology, 2008. 3(3): p. 145.

33.           Conde, J., G. Doria, and P. Baptista, Noble metal nanoparticles applications in cancer. Journal of drug delivery, 2012. 2012.

34.           Sharon, M., A.K. Choudhary, and R. Kumar, Nanotechnology in agricultural diseases and food safety. Journal of Phytology, 2010.

35.           mughal, S.S., et al., Role of Silver Nanoparticles in Colorimetric Detection of Biomolecules. Biomedicine and Nursing, 2019. 5(4): p. 31-47.

36.           de Barros, A.B., et al., Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI research, 2012. 2(1): p. 39.

37.           Orive, G., et al., Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2010. 1806(1): p. 96-107.

38.           Nazıroğlu, M., S. Muhamad, and L. Pecze, Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert review of clinical pharmacology, 2017. 10(7): p. 773-782.

39.           Yildiz, I., S. Shukla, and N.F. Steinmetz, Applications of viral nanoparticles in medicine. Current opinion in biotechnology, 2011. 22(6): p. 901-908.

40.           Charlton, J.R., S.C. Beeman, and K.M. Bennett, MRI-detectable nanoparticles: the potential role in the diagnosis of and therapy for chronic kidney disease. Advances in chronic kidney disease, 2013. 20(6): p. 479-487.

41.           Reddy, P.S., P. Ramaswamy, and C. Sunanda, Role of gold nanoparticles in early detection of oral cancer. Journal of Indian Academy of Oral Medicine and Radiology, 2010. 22(1): p. 30.

42.           Caruthers, S.D., et al., Anti‐angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009. 1(3): p. 311-323.

43.           Laroui, H., et al., Nanomedicine in GI. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2010. 300(3): p. G371-G383.

44.           Ojha, S. and B. Kumar, A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. Journal of Cellular Immunotherapy, 2018. 4(2): p. 56-64.

© Copy Rights
By Authors and RnD Journals.