• The International Journal of Biological Research (TIJOBR)- Published Quarterly
  • The International Journal of Global Sciences (TIJOGS) -Published Quarterly

Genome Editing and Speed Breeding; Game Changers to Boost the Crop Production

The International Journal of Biological Research (TIJOBR)


Muhammad Haroon1Rabail Afzal2, Fahad Idrees1, Ahmar Sunny1, Abdul Saboor Khan1,

1National Key Lab of Crop Genetics Improvement, Huazhong Agricultural University China.

2Department of Plant Breeding and Genetics, University of Agriculture Faisalabad Pakistan.

*Corresponding Author: muhammadharoon974@gmail.com

Submitted Accepted Published
Jan 04,2019 Jun 30,2019 Jul 04,2019

2019 / Vol: 2 / Issue: 2


Selection of the desired plants was started as the human civilization started. In result of human civilization, population was also increased, and it will be doubled up to 2050. Increased population will need more food. To overcome the future food challenges, new high yielded and disease resistant crop varieties are being developed. For the development of new lines, conventional breeding methods are applied. These conventional methods cannot meet the food demand in a very short time as it takes 6 to 7 years for the development of a new variety. To address this problem, different gene editing techniques including ZFN, TALEN and CRISPR/Cas9 were also employed. In comparison to zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), CRISPR technique showed more efficiency. CRISPR/Cas9 is used to edit the plant’s genome efficiently and precisely. With the use of CRISPR technique, Speed breeding procedure is also adapted to decrease the crop’s life cycle. By decreasing the crop cycle, a variety can be developed in a very short time. Comparison to conventional breeding methods, both new techniques can increase the yield, adaptability, biotic and abiotic resistances in a very short period. 

Keywords:   Speed breeding, CRISPR, Conventional breeding, Genome editing


  1. Alahmad, S., E. Dinglasan, K.M. Leung, A. Riaz, N. Derbal, K.P. Voss‑Fels, J.A. Able, F.M. Bassi, J. Christopher and L.T. Hickey, 2018. Speed breeding for multiple quantitative traits in durum wheat. Plant methods., 14: 36.
  2. Brooks, C., V. Nekrasov, Z.B. Lippman and E.J. Van, 2014. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. J Plant Physiol., 166: 1292-1297.
  3. Chilcoat, D., Z.B. Liu and J. Sander, 2017. Use of CRISPR/Cas9 for crop improvement in maize and soybean. Prog Mol Biol Transl Sci., 149: 27-46
  4. Cui, Y., J. Xu, M. Cheng, X. Liao and S. Peng, 2018. Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci., 10: 455-465.
  5. Driehuis, E. and H. Clevers, 2017. CRISPR/Cas 9 genome editing and its applications in organoids. Am J Physiol Gastrointest Liver Physiol., 312: G257-G265.
  6. Fu, Y., J.D. Sander, D. Reyon, V.M. Cascio and J.K. Joung, 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol., 32: 279.
  7. Ghosh, S., A. Watson, O.E. Gonzalez-Navarro, R.H. Ramirez-Gonzalez, L. Yanes, M. Mendoza-Suárez, J. Simmonds, R. Wells, T. Rayner, P. Green and A. Hafeez, 2018. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc., 13: 2944-2963.
  8. Han, W. and Q. She, 2017. CRISPR history: discovery, characterization, and prosperity. Prog Mol Biol Transl Sci., 152: 1-21
  9. Hallauer, A.R., 2011. Evolution of plant breeding. Crop Breed. Appl. Biotechnol., 11: 197-206. 
  10. Hickey, L.T., S.E. Germán, S.A. Pereyra, J.E. Diaz, L.A. Ziems, R.A. Fowler, G.J. Platz, J.D. Franckowiak and M.J. Dieters, 2017. Speed breeding for multiple disease resistance in barley. Euphytica, 213(3): 64.
  11. Hsu, P.D., D.A. Scott, J.A. Weinstein, F.A. Ran, S. Konermann, V. Agarwala, Y. Li, E.J. Fine, X. Wu, O. Shalem and T.J. Cradick, 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol., 31: 827.
  12. Jiang, W., H.  Zhou, H. Bi, M. Fromm, B. Yang and D.P. Weeks, 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res., 41: 188.
  13. Jinek, M., F. Jiang, D.W. Taylor, S.H. Sternberg, E. Kaya, E. Ma, C. Anders, M. Hauer, K. Zhou, S. Lin and M. Kaplan, 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science., 343.
  14. Karginov, F.V. and G.J. Hannon, 2010. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell., 37: 7-19.
  15. Kapiel, T.Y.S. Speed Breeding: A Powerful Innovative Tool in Agriculture Awareness of GM Food Proliferation in Saudi Arabia: A Case Study of Al Baha Province View Project. https://www.researchgate.net/publication/322644357.
  16. Lander, E.S., 2016. The heroes of CRISPR. Cell., 164: 18-28.
  17. Liu, X., S.Wu, J. Xu, C. Sui and J. Wei, 2017. Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B., 7: 292-302.
  18. Ma, Y., L. Zhang and X. Huang, 2014. Genome modification by CRISPR/Cas9. FEBS J., 281: 5186-5193.
  19. Makarova, K.S. and E.V. Koonin, 2015. Annotation and classification of CRISPR-Cas systems.  Methods Mol Biol., 1311: 47–75.
  20. Mao, Y., H. Zhang, N. Xu, B. Zhang, F. Gou and J.K. Zhu, 2013. Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol plants., 6: 2008-2011.
  21. Mushtaq, M., J.A. Bhat, Z.A. Mir, A. Sakina, S. Ali, A.K. Singh, A. Tyagi, R.K. Salgotra, A.A. Dar and R. Bhat, 2018. CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. Plant Pathol J., 224: 156-162.
  22. Nekrasov, V., B. Staskawicz, D. Weigel, J.D. Jones and S. Kamoun, 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol., 31: 691.
  23. Noman, A., M. Aqeel and S. He, 2016. CRISPR-Cas9: tool for qualitative and quantitative plant genome editing. Front. Plant Sci., 7: 1740.
  24. Peterson, B.A., D.C. Haak, M.T. Nishimura, P.J. Teixeira, S.R. James, J.L. Dangl and Z.L. Nimchuk, 2016. Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PloS ONE., 11(9). 
  25. Pyott, D.E., E. Sheehan and A. Molnar, 2016. Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free Arabidopsis plants. Mol Plant Pathol., 17: 1276-88.
  26. Richard, C.A., L.T. Hickey, S. Fletcher, R. Jennings, K. Chenu and J.T. Christopher, 2015. High-throughput phenotyping of seminal root traits in wheat. Plant Methods., 11: 13.
  27. Shivakumar, M., V. Nataraj, G. Kumawat, V. Rajesh, S. Chandra, S. Gupta and V.S. Bhatia, 2018. Speed breeding for Indian Agriculture: a rapid method for development of new crop varieties. Curr Sci., 115: 1241.
  28. Watson, A., S. Ghosh, M.J. Williams, W.S. Cuddy, J. Simmonds, M.D. Rey, M.A.M Hatta, A. Hinchliffe, A. Steed, D. Reynolds and N.M. Adamski, 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants., 4: 23.
  29. Watson, A., 2018. Speed breeding with genomic selection to accelerate genetic gain for yield in spring wheat (Triticum aestivum). [online] GlobalRust.org. Availableat https://www.globalrust.org/content/speed-breeding-genomic-selection-accelerate-genetic-gain-yield-spring-wheat-triticum.
  30. Wendt, T., P.B. Holm, C.G. Starker, M. Christian, D.F. Voytas, H. Brinch-Pedersen and I.B. Holme, 2013. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol., 83: 279-285.
  31. White, M.K., R. Kaminski, W.B. Young, P.C. Roehm and K. Khalili, 2017. CRISPR editing technology in 
  32. biological and biomedical investigation. J Cell Biochem., 118: 3586-3594
  33. Wolter, F., P. Schindele and H. Puchta, 2019. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biol., 19: 176.
  34. Woo, J.W., J. Kim, S.I. Kwon, C. Corvalán, S.W. Cho, H. Kim, S.G. Kim, S.T. Kim, S. Choe and J.S. Kim, 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol, 33: 1162.
  35. Yin, X., A.K. Biswal, J. Dionora, K.M. Perdigon, C.P. Balahadia, S. Mazumdar, C. Chater, H.C. Lin, R.A Coe, T. Kretzschmar and J.E. Gray, 2017. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep., 36: 745-757.
  36. Zhang, Y., Z. Liang, Y. Zong, Y. Wang, J. Liu, K. Chen, J.L. Qiu and C. Gao, 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun., 7: 12



© Copy Rights
By Authors and RnD Journals.