Aliabbas1, Afsah Urooj1, Tafseer Zahra2, Aqsa Iqbal2*
1Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
2Department of Botany, University of Agriculture, Faisalabad, Pakistan.
Corresponding email: aqsaiqbal0333@gmail.com
Submitted | Accepted | Published |
---|---|---|
Jun 11,2022 | Jun 25,2022 | Aug 06,2022 |
2022 / Vol: 5 / Issue: 1
Abstract
Abiotic stresses like salinity, drought, and high temperature have undesirable effects on crop productivity and quality, and negative trends in sustainable agriculture. The adverse effects of salinization on plants are evident from negative growth trends from alteration or inhibition of biochemical and physiological processes. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Salt accumulation in soil and water prevents plant growth through two major impacts. Firstly, the existence of salt in the soil solution decreases the capacity of a plant to absorb water, which is referred to as the osmotic or water deficiency of salt stress. This impact relies on the concentration of salt outside the plant and growth inhibition is mainly due to water shortage or osmotic stress, with very little genotypic variation in this trait observed. Secondly, the salt-specific or ion-excess salinity impact, whereby the accumulation of Na+ and Cl- ions within the plant leads to toxic impacts on plant biochemistry. Photosynthesis is crucial for the survival of all living biota, playing a key role in plant productivity by generating the carbon skeleton that is the primary component of all biomolecules. Salinity stress is a major threat to agricultural productivity and sustainability as it can cause irreversible damage to photosynthetic apparatus at any developmental stage. This work summarizes the current knowledge of impact of salinity on the key targets of the photosynthetic apparatus under salt stress; and tolerance of PSII to salt stress and its repair; salinity effects on biochemistry of CO2 fixation and its regulation.
Key words: salinity, photosynthesis, physiologyReference
- Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681.
- Ashraf, M. Some important physiological selection criteria for salt tolerance in plants. FLORA2004, 199, 361–376.
- Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017). Chloroplast function and ion regulation in plants growing on saline soils: Lessons from halophytes. Journal of Experimental Botany, 68(12), 3129–3143.
- Chao, D. Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., & Salt, D. E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 341(6146), 658–659.
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot.2009, 103, 551–560.
- Florke, M., Barlund, I., van Vliet, M. T. H., Bouwman, A. F., & Wada, Y. (2019). Analysing trade-offs between SDGs related to water quality using salinity as a marker. Current Opinion in Environmental Sustainability, 36, 96–104.
- Farooq, M. A., Shakeel, A., Zafar, M. M., Farooq, M., Chattha, W. S., and Husnain, T. J. J. o. N. F. (2020). "A study towards the development of salt tolerant upland cotton (Gossypium Hirsutum L.)." 1-17.
- Farooq, M. A., Zhang, X., Zafar, M. M., Ma, W., and Zhao, J. J. F. i. P. S. (2021). "Roles of Reactive Oxygen Species and Mitochondria in Seed Germination." 12.
- Flowers, T. J., Garcia, A., Koyama, M., & Yeo, A. R. (1997). Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiologiae Plantarum, 19(4), 427-433.
- Hanin, M., Ebel, C., Ngom, M., Laplaze, L., & Masmoudi, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in plant science, 7, 1787.
- Haroon, M., Wang, X., Afzal, R., Zafar, M. M., Idrees, F., Batool, M., Khan, A. S., and Imran, M. (2022). "Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production." 11(8), 1052.
- Kan, X., Ren, J., Chen, T., Cui, M., Li, C., Zhou, R., … Yin, Z. (2017). Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environmental and Experimental Botany, 140, 56–64.
- Mariam Jallani, Muhammad Mubashar Zafar, Muhammad Saqib Mushtaq, Muhammad Tahir, Zafar Hussain, Hafiz Saad Bin Mustafa. Effect of micro-nutrients and artificial acid rain on growth parameters of Mungbean [Vigna radiata (L.) Wilczek]. Nat Sci 2017;15(9):61-64.
- Manan, A., Zafar, M. M., Ren, M., Khurshid, M., Sahar, A., Rehman, A., Firdous, H., Youlu, Y., Razzaq, A., and Shakeel, A. J. P. P. S. (2022). "Genetic analysis of biochemical, fiber yield and quality traits of upland cotton under high-temperature." 25(1), 105-119.
- Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G., & Shabala, S. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83.
- Percey, W. J., McMinn, A., Bose, J., Breadmore, M. C., Guijt, R. M., & Shabala, S. (2016). Salinity effects on chloroplast PSII performance in glycophytes and halophytes1. Functional Plant Biology, 43(11), 1003–1015.
- Percey, W. J., Shabala, L., Breadmore, M. C., Guijt, R. M., Bose, J., & Shabala, S. (2014). Ion transport in broad bean leaf mesophyll under saline conditions. Planta, 240(4), 729–743.
- Pottosin, I., & Shabala, S. (2016). Transport across chloroplast membranes: Optimizing photosynthesis for adverse environmental conditions. Molecular Plant, 9(3), 356–370.
- Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., … Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282-295.
- Razzaq, A., Ali, A., Safdar, L. B., Zafar, M. M., Rui, Y., Shakeel, A., ... & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of food science, 85(1), 14-20.
- Rubio, J. S., Garcia-Sanchez, F., Rubio, F., & Martínez, V. (2009). Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Scientia Horticulturae, 119(2), 79-87.
- Sahin, U.; Ekinci, M.; Ors, S.; Turan, M.; Yildiz, S.; Yildirim, E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Hort.2018, 240, 196–204.
- Tahir, M., Zafar, M. M., Imran, A., Hafeez, M. A., Rasheed, M. S., Mustafa, H. S. B., & Ullah, A. (2018). Response of tomato genotypes against salinity stress at germination and seedling stage. Nat. and Sci, 16, 10-17.
- Tuteja, N., Gill, S. S., Tiburcio, A. F., & Tuteja, R. (Eds.). (2012). Improving crop resistance to abiotic stress. John Wiley & Sons.
- Valentini, R.; Epron, D.; Angelis, P.D.; Matteucci, G.; Dreyer, E. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q cerris L) leaves: Diurnal cycles under different levels of water supply. Plant Cell Environ.1995, 18, 631–640.
- Wang, H.; Tang, X.; Shao, C.; Shao, H.; Wang, L. Molecular cloning and bioinformatics analysis of a new plasma membrane Na+/H+ antiporter gene from the halophyte Kosteletzkya virginica. Sci. World J.2014, 2014, 141675.
- Wobbe, L., Bassi, R., & Kruse, O. (2016). Multi-level light capture control in plants and green algae. Trends in Plant Science, 21(1), 55–68.
- Zafar MM, A Razzaq, MA Farooq, A Rehman, H Firdous, A Shakeel, H Mo, M Ren, M Ashraf and Y Youlu, 2020. Genetic Variation Studies of Ionic and within Boll Yield Components in Cotton (Gossypium Hirsutum L.) Under Salt Stress. Journal of Natural Fibers.1-20.
- Zafar, MM, A Rehman, A Razzaq, A Parvaiz, G Mustafa, F Sharif, H Mo, Y Youlu, A Shakeel, and M Ren 2022. Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC plant biology. 22(1): 1-18.
- Zafar, MM, A Shakeel, M Haroon, A Manan, A Sahar, A Shoukat, H Mo, MA Farooq and M Ren, 2021c. Effects of Salinity Stress on Some Growth, Physiological, and Biochemical Parameters in Cotton (Gossypium hirsutum L.) Germplasm. Journal of Natural Fibers. 1-33.
- Zafar, MM, X Jia, A Shakeel, Z Sarfraz, A Manan, A Imran, H Mo et al. 2021a.Unraveling Heat Tolerance in Upland Cotton (Gossypium hirsutum L.) Using Univariate and Multivariate Analysis. Frontiers in Plant Science 12: 727835-727835.
- Zafar, M. M., Manan, A., Razzaq, A., Zulfqar, M., Saeed, A., Kashif, M., Khan, A. I., Sarfraz, Z., Mo, H., and Iqbal, M. S. J. A. (2021b). "Exploiting Agronomic and Biochemical Traits to Develop Heat Resilient Cotton Cultivars under Climate Change Scenarios." 11(9), 1885.
- Zhang, H. H., Xu, N., Wu, X., Wang, J. F., Ma, S., Li, X., & Sun, G. (2018). Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. Journal of Plant Interactions, 13(1), 506–513.
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and crop yield. Plant Biol.2018, 21, 31–38.