• The International Journal of Biological Research (TIJOBR)- Published Quarterly
  • The International Journal of Global Sciences (TIJOGS) -Published Quarterly

The origin and current situation of Fusarium oxysporum f.sp. lycopersici in Pakistan

The International Journal of Biological Research (TIJOBR)


Rukhsana Nazir1Hamza Khalid Khan2, Muhammad Shahzad Sharif1, Muhammad Uzaif Khan1, Abdul Rehman1, Amer Habib1, Muhammad Wahab1, Ghulam Fatima3

1Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan,

2Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan,

3Department of Zoology, Government College University, Faisalabad, Pakistan

“Corresponding Email”: rukhsananazir99@gmail.com; Hamza2696555@gmail.com

Submitted Accepted Published
May 05,2022 Jun 23,2022 Jun 30,2022

2022 / Vol: 5 / Issue: 1


Tomato is famous and vital vegetable in the world and it is very beneficial to human health. Fungal pathogen reduce the production of tomato. In Pakistan, the main reason of reduction in production of tomato crop is due to diseases. Fusarium oxysporum f.sp. lycopersici is fungal pathogen that cause vascular wilt disease in tomato. And this pathogen is from family Ascomycota and hypocreales order. 10 to 50% and 10 to 90% tomato crop losses in the world and in Pakistan warm regions respectively. Pathogen is saprophytic in nature and is soil borne and can survive in soil for many years. Young leaves show symptoms and growth is stunted and death occur. Sindh and Northern areas of Pakistan show disease with variation in disease incidence. Acidic soil and 25 to 28°C temperature favor infection. FOL enter in root epidermis and spread in tissues of vascular system. Furthermore, clogging in vessel show wilting symptoms. Chlamydospore is dormant and is present in soil even host is not present. Contaminated soil and farm equipment’s, infected transplant and irrigation water are main source of spread of this pathogen. In Pakistan that disease is managed by integrated practices such as use of resistant varieties, bio-control agents and systemic induced or acquired resistance. Use of resistant varieties and crop rotation is best way to manage this disease. Soil pH should be raised to control this disease and use of certified seed can also control this disease. Fol can control by SAR (Systemic Acquired Resistance), induced resistance, Plant resistance protein, foliar spray and Seed treatment. Fumonisin produced by pathogenic strains that infect tomato crops have mycotoxins ability.

Key words: Fusarium oxysporum, origin, tomato


  1. Abo-Elyousr, Kamal AM, & Mohamed, Hashem M. (2009). Biological Control of Fusarium Wilt in Tomato by Plant Growth-Promoting. Plant Pathol J, 25(2), 199-204. 
  2. Adisa, Ishaq O, Reddy Pullagurala, Venkata L, Rawat, Swati, Hernandez-Viezcas, Jose A, Dimkpa, Christian O, Elmer, Wade H, . . . Gardea-Torresdey, Jorge L. (2018). Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). Journal of agricultural and food chemistry, 66(24), 5959-5970. 
  3. Agrios, George N. (2005). Plant diseases caused by fungi. Plant pathology, 4, 385-614. 
  4. Agrios, GN. (2005a). Plant pathology 5th Edition: Elsevier Academic Press. Burlington, Ma. USA, 79-103. 
  5. Agrios, GN. (2005b). Plant pathology. Edition 5th Academic Press, New York, United States of America. 922 p. End of the English version
  6. Ajilogba, Caroline F, & Babalola, Olubukola O. (2013). Integrated management strategies for tomato Fusarium wilt. Biocontrol science, 18(3), 117-127. 
  7. Akbar, Asma, Hussain, Shaukat, Ullah, Kaleem, Fahim, Muhammad, & Ali, Gul Shad. (2018). Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan. PloS one, 13(9), e0203613. 
  8. Akram, Waheed, Mahboob, Asrar, & Javed, Asmat Ali. (2013). Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. European Journal of Microbiology and Immunology, 3(4), 275-280. 
  9. Alabouvette, Claude, Edel, Veronique, Lemanceau, Philippe, Olivain, Chantal, Recorbet, Ghislaine, & Steinberg, Christian. (2001). Diversity and interactions among strains of Fusarium oxysporum: application to biological control. Biotic interactions in plant-pathogen associations. CAB International, London, England, 131-157. 
  10. Amini, J. (2009). Physiological race of Fusarium oxysporum f. sp. Lycopersici in Kurdistan Province of Iran and reaction of some tomato cultivars to race 1 of pathogen. Plant Pathology Journal (Faisalabad), 8(2), 68-73. 
  11. Animashaun, BO, Popoola, AR, Enikuomehin, OA, Aiyelaagbe, IOO, & Imonmion, JE. (2017). Induced resistance to fusarium wilt (Fusarium oxysporum) in tomato using plant growth activator, acibenzolar-S-methyl. Nigerian Journal of Biotechnology, 32, 83–90-83–90. 
  12. Bastasa, GN, & Baliad, AA. (2005). Biological control of Fusarium wilt of abaca (Fusarium oxysporum) with Trichoderma and yeast. Philippine Journal of Crop Science, 30(2), 29-37. 
  13. Bawa, I. (2016). Management strategies of Fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici(Sacc.) A Review. Int. J. Adv. Acad. Res, 2(5). 
  14. Beckman, Carl H. (1987). The nature of wilt diseases of plants: APS press.
  15. Benhamou, Nicole, Kloepper, Joseph W, & Tuzun, Sadik. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta, 204(2), 153-168. 
  16. Borisade, OA, Uwaidem, YI, & Salami, AE. (2017). Preliminary report on Fusarium oxysporum f. sp. lycopersici (Sensu lato) from some tomato producing agroecological areas in Southwestern Nigeria and susceptibility of F1-resistant tomato hybrid (F1-Lindo) to infection. Annual Research & Review in Biology, 1-9. 
  17. Catanzariti, Ann‐Maree, Lim, Ginny TT, & Jones, David A. (2015). The tomato I‐3 gene: a novel gene for resistance to Fusarium wilt disease. New Phytologist, 207(1), 106-118. 
  18. Cha, Jae-Yul, Han, Sangjo, Hong, Hee-Jeon, Cho, Hyunji, Kim, Daran, Kwon, Youngho, . . . Kim, Jihyun F. (2016). Microbial and biochemical basis of a Fusarium wilt-suppressive soil. The ISME journal, 10(1), 119-129. 
  19. Chandel, Sunita, Allan, Eunice J, & Woodward, Steve. (2010). Biological control of Fusarium oxysporum f. sp. lycopersici on tomato by Brevibacillus brevis. Journal of phytopathology, 158(7‐8), 470-478. 
  20. Chohan, Tahir Zahoor, & Ahmad, Sarfraz. (2008). An assessment of tomato production practices in Danna Katchely, Azad Jammu Kashmir. Pak J Life Soc Sci, 6, 96-102. 
  21. De Cal, A, Pascual, S, Larena, I, & Melgarejo, P. (1995). Biological control of Fusarium oxysporum f. sp. lycopersici. Plant pathology, 44(5), 909-917. 
  22. De Cal, A, Pascual, S, & Melgarejo, P. (1997). Infectivity of chlamydospores vs microconidia of Fusarium oxysporum f. sp. lycopersici on tomato. Journal of Phytopathology, 145(5‐6), 231-233. 
  23. Debbi, Ali, Boureghda, Houda, Monte, Enrique, & Hermosa, Rosa. (2018). Distribution and genetic variability of Fusarium oxysporum associated with tomato diseases in Algeria and a biocontrol strategy with indigenous Trichoderma spp. Frontiers in microbiology, 9, 282. 
  24. Di, Xiaotang, Takken, Frank LW, & Tintor, Nico. (2016). How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Frontiers in plant science, 7, 170. 
  25. Djatnika, I, & Hermanto, C. (2003). Biological control of Fusarium wilt on banana plants with Pseudomonas fluorescens and Gliocladium sp. J. Hortic, 13, 205-211. 
  26. Dubey, SC, & Singh, Birendra. (2004). Reaction of chickpea genotypes against Fusarium oxysporum f. sp. ciceri causing vascular wilt. Indian Phytopathology, 57(2), 233-233. 
  27. Fatima, Sabin, & Anjum, Tehmina. (2017). Potential of rhizospheric Pseudomonas strains to manage Fusarium wilt of tomato. Journal of Agricultural Research (03681157), 55(3). 
  28. Foster, RE. (1946). The 1st Symptom of Tomato Fusarium Wilt-Clearing of the Ultimate Veinlets in the Leaf. Phytopathology, 36(9), 691-694. 
  29. Gordon, TR, & Okamoto, D. (1992). Population structure and the relationship between pathogenic and nonpathogenic strains of Fusarium oxysporum. Phytopathology, 82(1), 73-77. 
  30. Gupta, VP, Bochow, H, Dolej, S, & Fischer, I. (2000). Plant growth-promoting Bacillus subtilis strain as potential inducer of systemic resistance in tomato against Fusarium wilt/Ein das Pflanzenwachstum fördernder Bacillus subtilis-Stamm als potentieller Resistenzinduktor gegen die Fusarium-Welke an Tomaten. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 145-154. 
  31. Halila, MH, & Strange, RN. (1996). Identification of the causal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp. ciceri race 0. Phytopathologia mediterranea, 67-74. 
  32. Haware, MP, Nene, YL, & Natarajan, M. (1996). The survival of Fusarium oxysporum f. sp. ciceri in the soil in the absence of chickpea. Phytopathologia mediterranea, 9-12. 
  33. Haware, MP, Nene, YL, & Rajeshwari, R. (1978). Eradication of Fusarium oxysporum f. sp. ciceri transmitted in chickpea seed. Phytopathology, 68(9), 1364-1367. 
  34. Hervas, A, Landa, B, Datnoff, LE, & Jimenez-Diaz, RM. (1998). Effects of commercial and indigenous microorganisms on fusarium wilt development in chickpea1. Biological Control, 13(3), 166-176. 
  35. Hussain, F, Abid, M, Farzana, A, Akbar, M, & Shaukat, SS. (2013). Control of some important soil-borne fungi by chitin associated with chilli (Capsicum annuum L.) in lower Sindh, Pakistan. Science Technology and Development, 32(3), 228-234. 
  36. Ishikawa, Ryo, Shirouzu, Kentaro, Nakashita, Hideo, Lee, Han-Young, Motoyama, Takayuki, Yamaguchi, Isamu, . . . Arie, Tsutomu. (2005). Foliar spray of validamycin A or validoxylamine A controls tomato Fusarium wilt. Phytopathology, 95(10), 1209-1216. 
  37. Jiskani, MM, Pathan, MA, Wagan, KH, Imran, M, & Abro, H. (2007). Studies on the control of tomato damping-off disease caused by Rhizoctonia solani Kuhn. Pak. J. Bot, 39(7), 2749-2754. 
  38. Jones, JP, & Overman, AJ. (1971). Control of Fusarium wilt of tomato with lime and soil fumigante. Phytopathology, 61(12), 1415-1417. 
  39. Kanini, Grammatiki S, Katsifas, Efstathios A, Savvides, Alexandros L, & Karagouni, Amalia D. (2013). Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. BioMed research international, 2013
  40. Khan, Noor, Maymon, Maskit, & Hirsch, Ann M. (2017). Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms, 5(4), 75. 
  41. Krol, P, Igielski, R, Pollmann, S, & Kepczynska, E. (2015). Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f. sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. Journal of plant physiology, 179, 122-132. 
  42. Lagopodi, Anastasia L, Ram, Arthur FJ, Lamers, Gerda EM, Punt, Peter J, Van den Hondel, Cees AMJJ, Lugtenberg, Ben JJ, & Bloemberg, Guido V. (2002). Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Molecular Plant-Microbe Interactions, 15(2), 172-179. 
  43. LeBlanc, Nicholas, Kinkel, Linda, & Kistler, H Corby. (2017). Plant diversity and plant identity influence Fusarium communities in soil. Mycologia, 109(1), 128-139. 
  44. Leeman, M, Van Pelt, JA, Hendrickx, MJ, Scheffer, RJ, Bakker, PAHM, & Schippers, B. (1995). Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology, 85(10), 1301-1305. 
  45. Lemanceau, Philippe, & Alabouvette, Claude. (1993). Suppression of Fusarium wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Science and Technology, 3(3), 219-234. 
  46. Malhotra, SK, & Vashistha, RN. (1993). Genetics of resistance to Fusarium wilt race 1 in currant tomato(Lycopersicon pimpinellifolium). Indian Journal of Agricultural Sciences, 63(4), 246-247. 
  47. Mandal, Sudhamoy, Mallick, Nirupama, & Mitra, Adinpunya. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant physiology and Biochemistry, 47(7), 642-649. 
  48. Medina-Filho, H, & Tanksley, SD. (1983). Breeding for nematode resistance. Handbook of plant cell culture (USA), 1
  49. Mui-Yun, W. (2003). Fusarium oxysporum f. sp. lycopersici (Sacc.): PP728 Soil-borne Plant Pathogen Class Project. North Carolina State University
  50. Naika, Shankara, de Jeude, Joep van Lidt, de Goffau, Marja, & Hilmi, Martin. (2005). AD17E Cultivation of tomato: Agromisa Foundation.
  51. Nirmaladevi, D, Venkataramana, M, Srivastava, Rakesh K, Uppalapati, SR, Gupta, Vijai Kumar, Yli-Mattila, T, . . . Chandra, Nayaka S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Scientific reports, 6(1), 1-14. 
  52. Noonari, Sanaullah, Memon, Ms Irfana Noor, Solangi, Shuhab Uddin, Laghari, Majid Ali, Wagan, Shoaib Ahmed, Sethar, Asif Ahmed, . . . Panhwar, Ghulam Mustafa. (2015). Economic implications of tomato production in naushahro feroze district of Sindh Pakistan. Research on Humanities and Social Sciences, 5(7), 158-170. 
  53. Olivain, Chantal, & Alabouvette, Claude. (1997). Colonization of tomato root by a non‐pathogenic strain of Fusarium oxysporum. New Phytologist, 137(3), 481-494. 
  54. Olivain, Chantal, & Alabouvette, Claude. (1999). Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici in comparison with a non‐pathogenic strain. New Phytologist, 141(3), 497-510. 
  55. Olivain, Chantal, Trouvelot, Sophie, Binet, Marie-Noëlle, Cordier, Christelle, Pugin, Alain, & Alabouvette, Claude. (2003). Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Applied and Environmental Microbiology, 69(9), 5453-5462. 
  56. Partridge, JE. (1997). Introductory Plant Pathology. URL: www. ianr. unl. edu/ianr/plntpath/peartreewww. ianr. unl. edu/ianr/plntpath/peartree. University of Nebraska, Lincoln, NE
  57. Paz-Lago, Dalila, Borges, Andrés A, Gutiérrez, A, Borges, Anna, Cabrera, G, Ramírez, Miguel A, & Falcón, A. (2000). Tomato-Fusarium oxysporum interactions: II. Chitosan and MSB induced resistance against fol in young tomato plants. 
  58. Pietro, Antonio Di, Madrid, Marta P, Caracuel, Zaira, Delgado‐Jarana, Jesús, & Roncero, M Isabel G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular plant pathology, 4(5), 315-325. 
  59. Prihatna, C, Barbetti, MJ, & Barker, SJ. (2018). A novel tomato Fusarium wilt tolerance gene. Front Microbiol 9: 1226.
  60. Pritesh, P, & Subramanian, RB. (2011). PCR based method for testing Fusarium wilt resistance of tomato. African Journal of Basic and Applied Sciences, 3(5), 222. 
  61. Ringler, Claudia, & Anwar, Arif. (2013). Water for food security: challenges for Pakistan. Water International, 38(5), 505-514. 
  62. Rojo, Federico G, Reynoso, Maria M, Ferez, Marcela, Chulze, Sofía N, & Torres, Adriana M. (2007). Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop protection, 26(4), 549-555. 
  63. Rozlianah, FS, & Sariah, M. (2010). Characterization of Malaysian isolates of Fusarium from tomato and pathogenicity testing. Research Journal of Microbiology, 5(9), 926-932. 
  64. Sally, AM, Randal, CR, & Richard, MR. (2006). Fusarium Verticillium wilts of Tomato, Potato, Pepper and Egg plant. The Ohio State University Extension
  65. Shafique, Shazia, Asif, Muhammad, & Shafique, Sobiya. (2015). Management of Fusarium oxysporum f. sp. capsici by leaf extract of Eucalyptus citriodora. Pak. J. Bot, 47(3), 1177-1182. 
  66. Sherwood, Everett Clifton. (1920). Hydrogen ion concentration as related to the Fusarium wilt of tomato seedlings: University of Wisconsin-Madison.
  67. Shidfar, Farzad, Froghifar, Neda, Vafa, Mohammadreza, Rajab, Asadolah, Hosseini, Sharieh, Shidfar, Shahrzad, & Gohari, Mahmoodreza. (2011). The effects of tomato consumption on serum glucose, apolipoprotein B, apolipoprotein AI, homocysteine and blood pressure in type 2 diabetic patients. International journal of food sciences and nutrition, 62(3), 289-294. 
  68. Singh, Ajay Kumar, & Kamal, Shashi. (2012). Chemical control of wilt in tomato (Lycopersicon esculentum L.). International Journal of Horticulture, 2
  69. Singh, Ravindra, Biswas, SK, Nagar, Devesh, Singh, Jaskaran, Singh, Morajdhwaj, & Mishra, Yogesh Kumar. (2015). Sustainable integrated approach for management of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (Sacc.) Synder and Hansen. Sustainable Agriculture Research, 4(526-2016-37870). 
  70. Singh, Vivek Kumar, Singh, Harikesh Bahadur, & Upadhyay, Ram Sanmukh. (2017). Role of fusaric acid in the development of ‘Fusarium wilt’symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant physiology and biochemistry, 118, 320-332. 
  71. Srivastava, Pankaj Kumar, Shenoy, Belle Damodara, Gupta, Manjul, Vaish, Aradhana, Mannan, Shivee, Singh, Nandita, . . . Tripathi, Rudra Deo. (2012). Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties. Microbes and environments, ME11316. 
  72. Stone, Jeffrey K, Bacon, Charles W, & White, JF. (2000). An overview of endophytic microbes: endophytism defined. Microbial endophytes, 3, 29-33. 
  73. Sultana, Nasreen, & Ghaffar, Abdul. (2013). Effect of fungicides, microbial antagonists and oil cakes in the control of Fusarium oxysporum, the cause of seed rot and root infection of bottle gourd and cucumber. Pak. J. Bot, 45(6), 2149-2156. 
  74. Tello-Marquina, J, & Lacasa, A. (1988). Evolution of races among Fusarium oxysporum f. sp. lycopersici. De Sanidad Vegetal Plagas, 14, 335-341. 
  75. Waard, MA, Georgopoulos, SG, Hollomon, DW, Ishii, H, Leroux, P, Ragsdale, NN, & Schwinn, FJ. (1993). Chemical control of plant diseases: problems and prospects. Annual Review of Phytopathology, 31(1), 403-421. 
  76. Wang, Chenfang, Zhang, Shijie, Hou, Rui, Zhao, Zhongtao, Zheng, Qian, Xu, Qijun, . . . Gao, Xuli. (2011). Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog, 7(12), e1002460. 
Woltz, SS, & Jones, JP. (1984). Effects of aluminum, lime, and phosphate combinations on Fusarium-wilt (Race-3) of tomato. Paper presented at the Phytopathology.

© Copy Rights
By Authors and RnD Journals.