• The International Journal of Biological Research (TIJOBR)- Published Quarterly
  • The International Journal of Global Sciences (TIJOGS) -Published Quarterly

Zea mays L. Germplasm Characterization Based on Various Morphological Attributes

The International Journal of Biological Research (TIJOBR)


Zea mays L. Germplasm Characterization Based on Various Morphological Attributes

Tayyaba Mahmood1Muhammad Qasim2Saeed Ahmad3, *Hamza Bin Sajid4, Muhammad Abdullah5, Rabia Dilshad6, Naeem Tahir7

1,2,3,4,5,6Department of Plant Breeding & Genetics, University of Agriculture Faisalabad

7Department of Botany, Abdul Wali Khan University Mardan, Pakistan

*Corresponding Author: hamzabinsajid786@gmail.com

Submitted Accepted Published
Jan 13,2022 Mar 06,2022 Mar 30,2022

2022 / Vol: 5 / Issue: 1



An experiment was performed for the assessment of genetic diversity among the 20 maize inbred lines that are indigenous to Pakistan. The experiment was laid out in randomized complete block design. The data was recorded at physiological maturity for 11 traits. The statistical analysis showed that all the genotypes have significant variability for all the characters. Tukey all pair-wise mean comparison test showed that genotypes UAF-PB-805, UAF-PB-788, UAF-PB-871, UAF-PB-884, UAF-PB-890, UAF-PB-806, UAF-PB-889, and UAF-PB-794 are best for the character under study. The correlation analysis of recorded data showed that grain yield per plant has a positive and significant association with cob length, cob diameter, total no. of grains per cob, 100-grain weight, and cob yield per plant. The path coefficient analysis showed that days to 50% anthesis, plant height, cob length, cob diameter, total no. of grains per cob, 100-grain weight, and cob yield per plant has direct positive effects on grain yield per plant. The present findings of identifying potential yield contributing plant traits along with a high level of genetic diversity among the genotypes would be beneficial for maize genotype characterization, conservation, and planning for further maize breeding programs for enhanced yield potential.

Key words: Maize, germplasm characterization, genetic diversity


  1. Acquaah, G. (2009). Principles of plant genetics and breeding. John Wiley & Sons.
  2. Ahmadi, V., Eslami, F. S., & Rabieyan, Z. (2014). Correlation and path coefficient analyses of forage yield in corn hybrids as second crop. Int. J. Biosci, 4(4), 170-175.
  3. Al-Amin, M., Azad, M. A. K., Shovon, S. R., & Haque, M. F. (2019). Genetic Variability and Character Association in Maize (Zea mays L.) Inbred Lines. Turkish Journal of Agriculture-Food Science and Technology, 7(8), 1125-1131.
  4. Alhussein, M. B., & Idris, A. E. (2017). Correlation and path analysis of grain yield components in some maize (Zea mays L.) genotypes. International Journal of Advanced Researcha Publications, 1(1), 79-82.
  5. Ali, S., Khan, N. U., Farid, A., Khan, A., Hussain, I., Khan, S. M., ... & Iqbal, M. (2018). 9. Contribution of yield and yield related traits toward grain yield in maize F1 hybrids. Pure and Applied Biology (PAB), 7(1), 66-77.
  6. Arabi, B. A. B. (2016). Variability and Correlation Between Growth, Yield and Its Components in some Grain Maize (Zea mays L.) Genotypes (Doctoral dissertation, Sudan University of Science and Technology).
  7. Begam, A., Adhikary, S., Roy, D. C., & Ray, M. (2018). Grain Yield of Kharif Maize Hybrid (Zea mays L) as Influenced by Doses and Split Application of Nitrogen. Int. J. Curr. Microbiol. App. Sci, 7(7), 2121-2129.
  8. Begum, S., Ahmed, A., Omy, S. H., Rohman, M. M., & Amiruzzaman, M. (2016). Genetic variability, character association and path analysis in maize (Zea mays L.). Bangladesh Journal of Agricultural Research, 41(1), 173-182.
  9. Bekele, A., & Rao, T. N. (2014). Estimates of heritability, genetic advance and correlation study for yield and it’s attributes in maize (Zea mays L.). Journal of Plant Sciences, 2(1), 1-4.
  10. Bello, O. B., Abdulmaliq, S. Y., Afolabi, M. S., & Ige, S. A. (2010). Correlation and path coefficient analysis of yield and agronomic characters among open pollinated maize varieties and their F1 hybrids in a diallel cross. African Journal of Biotechnology, 9(18), 2633-2639.
  11. Bhutto, A. W., Harijan, K., Qureshi, K., Bazmi, A. A., & Bahadori, A. (2015). Perspectives for the production of ethanol from lignocellulosic feedstock–A case study. Journal of Cleaner Production, 95, 184-193.
  12. Choukan, R., & Warburton, M. L. (2005). Use of SSR data to determine relationships among early maturing Iranian maize inbred lines.
  13. Choukan, R., & Zamani, M. (2004). A study on genetic control of maize fusarium ear rot. Iranian Journal Agricalture Science, 35(1), 189-194.
  14. Cyprien, M., & Kumar, V. (2011). Correlation and path coefficient analysis of rice cultivars data. Journal of reliability and Statistical Studies, 119-131.
  15. Dewey, D. R., & Lu, K. (1959). A correlation and path‐coefficient analysis of components of crested wheatgrass seed production 1. Agronomy journal, 51(9), 515-518.
  16. Fekadu, K. (2014). Genetic variability for yield and yield related traits in some maize (Zea mays L.) inbred lines in Central Highland of Ethiopia. Ms. c thesis submitted to the collage of Natural and Computational Sciences, Department of Biology, School of Graduate Studies Haramaya University.
  17. Freeman, T. A., Wali, M. C., Adjei, E. A., Kollie, W. S., & Pride, C. (2019). Genetic variability and divergence studies in maize (Zea mays L.). EC Agriculture, 5(6), 284-290.
  18. Ghimire, B., & Timsina, D. (2015). Analysis of yield and yield attributing traits of maize genotypes in Chitwan, Nepal. World Journal of Agricultural Research, 3(5), 153-162.
  19. Goodman, M. M. (2005). Broadening the US maize germplasm base. Maydica, 50(3-4), 203-214.
  20. Govt. of Pakistan. (2018-19). Economic Survey of Pakistan, Ministry of Finance, Economic Advisor Wing, Islamabad.
  21. Han, L., Yang, G., Dai, H., Yang, H., Xu, B., Feng, H., ... & Yang, X. (2019). Fuzzy clustering of maize plant-height patterns using time series of UAV remote-sensing images and variety traits. Frontiers in Plant Science, 10, 926.
  22. Huda, M. N., Hossain, M. S., & Sonom, M. (2016). Genetic variability, character association and path analysis of yield and its component traits in maize (Zea mays L.). Bangladesh Journal of Plant Breeding and Genetics, 29(1), 21-30.
  1. Ilker, E. (2011). Correlation and path coefficient analyses in sweet corn. Turkish Journal of field crops, 16(2), 105-107.
  2. Jilo, T., & Tulu, L. (2019). Association and path coefficient analysis among grain yield and related traits in Ethiopian maize (Zea mays L.) inbred lines. African Journal of Plant Science, 13(9), 264-272.
  3. Khan, A. S., Ullah, H., Shahwar, D., Fahad, S., Khan, N., Yasir, M., ... & Noor, M. (2018). Heritability and correlation analysis of morphological and yield traits in maize. Journal of Plant Biology and Crop Research, 2, 1-8.
  4. Khazaei, F., Alikhani, M. A., Yari, L., & Khandan, A. (2010). Study the correlation, regression and path coefficient analysis in sweet corn (Zea mays var. saccharata) under different levels of plant density and nitrogen rate. Journal of Agricultural and Biological Science, 5(6), 14-19.
  6. Kumar, V., Singh, S. K., Bhati, P. K., Sharma, A., Sharma, S. K., & Mahajan, V. (2015). Correlation, path and genetic diversity analysis in maize (Zea mays L.). Environment & Ecology, 33(2A), 971-975.
  7. Kwaga, Y. M. (2014). Correlation coefficients between grain yield and other characters of maize (Zea mays L.) grown at Mubi in Northern Savanna, Nigeria. Int. J. Farm Alli. Sci, 3(2), 220-224.
  8. Maqbool, M. M., Tanveer, A., Ali, A., Abbas, M. N., Imran, M., Ahmad, M., & Abid, A. A. (2016). Growth and yield response of maize (Zea mays) to inter and intra-row weed competition under different fertilizer application methods. Planta Daninha, 34, 47-56.
  9. Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez G, J., Buckler, E., & Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences, 99(9), 6080-6084.
  10. Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop science, 43(4), 1235-1248.
  1. Najar, Z. A., Sheikh, F. A., Najeeb, S., Shikari, A. B., Ahangar, M. A., Sheikh, G. A., & Wani, S. H. (2018). Genotypic and morphological diversity analysis in high altitude maize (Zea mays L.) inbreds under Himalayan temperate ecologies. Maydica, 63(1), 7.
  2. Oyekunle, M., Ado, S. G., Usman, I. S., Abdulmalik, R. O., Ahmed, H. O., Hassan, L. B., & Yahaya, M. A. (2019). Gains in grain yield of released maize (Zea mays L.) cultivars under drought and well-watered conditions. Experimental Agriculture, 55(6), 934-944.
  3. Pavlov, J., Delić, N., Marković, K., Crevar, M., Čamdžija, Z., & Stevanović, M. (2015). Path analysis for morphological traits in maize (Zea mays L.). Genetika, 47(1), 295-301.
  4. Pearson, E. S., & Neyman, J. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference: Part I. Biometrika, 175-240..
  5. Prakash, R., Ravikesavan, R., Vinodhana, N. K., & Senthil, A. (2019). Genetic variability, character association and path analysis for yield and yield component traits in maize (Zea Mays L.). Electronic Journal of Plant Breeding, 10(2), 518-524.
  1. Rajwade, J. K., Jagadev, P. N., Lenka, D., & Gupta, S. (2018). Correlation and path coefficient studies on elite genotypes of maize inbred lines. Journal of Pharmacognosy and Phytochemistry, 7(2), 2765-2771.
  2. Alvi, M. B., Rafique, M., Tariq, M. S., Hussain, A., Mahmood, T., & Sarwar, M. (2003). Character association and path coefficient analysis of grain yield and yield components maize (Zea mays L.). Pakistan Journal of Biological Sciences (Pakistan).
  3. Rocha, R. S., Nascimento, M. R., Chagas, J. T. B., de Almeida, R. N., dos Santos, P. R., da Cruz, D. P., ... & Daher, R. F. (2019). Association among Agro-morphological Traits by Correlations and Path in Selection of Maize Genotypes. Journal of Experimental Agriculture International, 34(2), 1-12.
  4. Selvaraj, C. I., & Pothiraj, N. (2011). Interrelationship and path-coefficient studies for qualitative traits, grain yield and other yield attributes among maize (Zea mays L.). International Journal of Plant Breeding and Genetics, 5(3), 209-223.
  1. Shaw, R. H. (1988). Climate requirement. Corn and corn improvement, 18, 609-638.
  2. Singh, G., & Kumar, R. (2017). Genetic parameters and character association study for yield traits in maize (Zea mays L.). Journal of Pharmacognosy and Phytochemistry, 6(5), 808-813.
  3. Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics, a biometrical approach (No. Ed. 2). McGraw-Hill Kogakusha, Ltd..
  1. SYNREM, G. J., MARKER, S., BHUSAL, T., & KUMAR, L. N. (2016). CORRELATION AND PATH COEFFICIENT ANALYSIS IN MAIZE GENOTYPES. Annals of Plant and Soil Research, 18(3), 232-240.
  2. Tembo, E. (2012). Relationship of molecular genetic distance of seven quality protein maize (Zea mays L.) inbred lines with specific combining ability and grain yield of hybrids.
  3. Tulu, B. N. (2014). Correlation and path coefficients analysis studies among yield and yield related traits of quality protein maize (QPM) inbred lines. International Journal of Plant Breeding and Crop Science, 1(2), 006-017.
  4. Wang, X., Chang, J., Qin, G., Zhang, S., Cheng, X., & Li, C. (2011). Analysis on yield components of elite maize variety Xundan 20 with super high yield potential. African Journal of Agricultural Research, 6(24), 5490-5495.
  5. Wannows, A. A., Azzam, H. K., & Al-Ahmad, S. A. (2010). Genetic variances, heritability, correlation and path coefficient analysis in yellow maize crosses (Zea mays L.). Agriculture and Biology Journal of North America, 1(4), 630-637.
  6. Yadav, V. K., & Singh, I. S. (2010). Comparative evaluation of maize inbred lines (Zea mays L.) according to DUS testing using morphological, physiological and molecular markers. Agricultural Sciences, 1(03), 131.
  7. Yim, O., & Ramdeen, K. T. (2015). Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data. The quantitative methods for psychology, 11(1), 8-21.
  8. Zarei, B., Kahrizi, D., Aboughadareh, A. P., & Sadeghi, F. (2012). Correlation and path coefficient analysis for determining interrelationships among grain yield and related characters in corn hybrids (Zea mays L.). International Journal of Agriculture and Crop Sciences, 4(20), 1519-1522.
  1. Zeeshan, M., Ahsan, M., Arshad, W., Ali, S., Hussain, M., & Khan, M. I. (2013). Estimate of correlated responses for some polygenic parameters in yellow maize (Zea mays L.) hybrids. International Journal of Advanced Research, 1(5), 24-29.
  2. Zafar MM, A Razzaq, MA Farooq, A Rehman, H Firdous, A Shakeel, H Mo, M Ren, M Ashraf and Y Youlu, 2020b. Genetic Variation Studies of Ionic and within Boll Yield Components in Cotton (Gossypium Hirsutum L.) Under Salt Stress. Journal of Natural Fibers.1-20.
  3. Zafar, MM , G Mustafa, F Shoukat, A Idrees, A Ali, F Sharif, A Shakeel et al., 2022b. Heterologous expression of cry3Bb1 and cry3 genes for enhanced resistance against insect pests in cotton. Scientific Reports.12(1): 1-11.
  4. Zafar, MM, A Manan, A Razzaq, M Zulfqar, A Saeed, M Kashif, A Iqbal Khan et al, 2021b. Exploiting Agronomic and Biochemical Traits to Develop Heat Resilient Cotton Cultivars under Climate Change Scenarios. Agronomy 11(9): 1885.
  5. Zafar, MM, A Razzaq, MA Farooq, A Rehman, H Firdous, A Shakeel, H Mo, And M Ren, 2020a. Insect resistance management in Bacillus thuringiensis cotton by MGPS (multiple genes pyramiding and silencing). Journal of Cotton Research 3(1): 1-13.
  6. Zafar, MM, A Rehman, A Razzaq, A Parvaiz, G Mustafa, F Sharif, H Mo, Y Youlu, A Shakeel, and M Ren 2022c. Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC plant biology. 22(1): 1-18.
  7. Zafar, MM, A Shakeel, M Haroon, A Manan, A Sahar, A Shoukat, H Mo, MA Farooq and M Ren, 2021c. Effects of Salinity Stress on Some Growth, Physiological, and Biochemical Parameters in Cotton (Gossypium hirsutum L.) Germplasm. Journal of Natural Fibers. 1-33.
  8. Zafar, MM, X Jia, A Shakeel, Z Sarfraz, A Manan, A Imran, H Mo et al. 2021a.Unraveling Heat Tolerance in Upland Cotton (Gossypium hirsutum L.) Using Univariate and Multivariate Analysis. Frontiers in Plant Science 12: 727835-727835.
  9. Zafar, MM, Y Zhang, MA Farooq, A Ali, H Firdous, M Haseeb, S Fiaz, A Shakeel, A Razzaq and M Ren, 2022a.Biochemical and Associated Agronomic Traits in Gossypium hirsutum L. under High Temperature Stress. Agronomy.12(6): 1310.

© Copy Rights
By Authors and RnD Journals.