Anum Saira1, Iqra Rehman2, Bilal Ahmad3, Muhammad Mubashar2
Department of Botany, University of Agriculture Faisalabad-Pakistan
2Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad
3Department of Plant Pathology, University of Agriculture, Faisalabad-Pakistan
*Corresponding author: anamsaira51@gmail.com
Submitted | Accepted | Published |
---|---|---|
Nov 01,2022 | Nov 29,2022 | Dec 04,2022 |
2022 / Vol: 5 / Issue: 3
Abstract
Ground-breaking innovation has dominated the Clustered regularly interspaced short palindromic repeats for genome editing. Here we discussed the use of CRISPR-Cas9 in both animals and plants. This methodology is used to target genes that directly cause disease and to understand the biology of unknown species. On a national and international level, the issue of whether genetically engineered products, particularly CISPR/Cas, should be regulated is now being considered. This versatile platform that changes the game has given rise to many new plant biotechnologies that simplify gene regulation and protein production. Because of its effectiveness, adaptability, and lack of transgenes, CRISPR-Cas is intriguing. In order to reduce the off-target effects, a thorough evaluation of the CRISPR-Cas9 process is also necessary.
Key Words:
CRISPR-Cas9, Gene Editing, Plant Genome Editing, Animal Genome Editing
Reference
- Ali, Z., Abul-Faraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M., Piatek, A., Baltes, N. J., & Voytas, D. F. (2015). Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Molecular plant, 8(8), 1288-1291.
- Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., & Nekrasov, V. (2015). Editing plant genomes with CRISPR/Cas9. Current opinion in biotechnology, 32, 76-84.
- Butt, H., Eid, A., Momin, A. A., Bazin, J., Crespi, M., Arold, S. T., & Mahfouz, M. M. (2019). CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome biology, 20(1), 1-9.
- Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual review of plant biology, 70, 667-697.
- Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J., & Voytas, D. F. (2010). TAL effector nucleases create targeted DNA double-strand breaks. Genetics, 186(2), 757-761.
- Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., & Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. science, 339(6121), 819-823.
- Decaestecker, W., Buono, R. A., Pfeiffer, M. L., Vangheluwe, N., Jourquin, J., Karimi, M., Van Isterdael, G., Beeckman, T., Nowack, M. K., & Jacobs, T. B. (2019). CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. The Plant Cell, 31(12), 2868-2887.
- Durr, J., Papareddy, R., Nakajima, K., & Gutierrez-Marcos, J. (2018). Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9. Scientific reports, 8(1), 1-11.
- Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F., Zhu, S., Zhang, F., & Mao, Y. (2013).
- Haroon M, Afzal R, Zafar MM, Zhang H, & Li L, 2022a. Ribonomics Approaches to Identify RBPome in Plants and Other Eukaryotes: Current Progress and Future Prospects. International Journal of Molecular Sciences, 23(11), 5923.
- Haroon, Muhammad, Xiukang Wang, Rabail Afzal, Muhammad Mubashar Zafar, Fahad Idrees, Maria Batool, Abdul Saboor Khan, and Muhammad Imran. "Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production." Plants 11, no. 8 (2022b): 1052. Efficient genome editing in plants using a CRISPR/Cas system. Cell research, 23(10), 1229-1232.
- Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., & Noble, I. (2013). Sustainable development goals for people and planet. Nature, 495(7441), 305-307.
- Güralp, H., Skaftnesmo, K. O., Kjærner-Semb, E., Straume, A. H., Kleppe, L., Schulz, R. W., Edvardsen, R. B., & Wargelius, A. (2020). Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Scientific reports, 10(1), 1-12.
- Hai, T., Teng, F., Guo, R., Li, W., & Zhou, Q. (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell research, 24(3), 372-375.
- Horii, T., Morita, S., Kimura, M., Kobayashi, R., Tamura, D., Takahashi, R.-u., Kimura, H., Suetake, I., Ohata, H., & Okamoto, K. (2013). Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system. PeerJ, 1, e230.
- Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., & Shalem, O. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature biotechnology, 31(9), 827-832.
- Jansen, R., Embden, J. D. v., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.
- Ji, X., Si, X., Zhang, Y., Zhang, H., Zhang, F., & Gao, C. (2018). Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome biology, 19(1), 1-7.
- Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology, 31(3), 233-239.
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 337(6096), 816-821.
- Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering. Science, 361(6405), 866-869.
- Lee, H., Yoon, D. E., & Kim, K. (2020). Genome editing methods in animal models. Animal cells and systems, 24(1), 8-16.
- Li, W., Li, X., Li, T., Jiang, M.-G., Wan, H., Luo, G.-Z., Feng, C., Cui, X., Teng, F., & Yuan, Y. (2014). Genetic modification and screening in rat using haploid embryonic stem cells. Cell stem cell, 14(3), 404-414.
- Mehta, D., Stürchler, A., Anjanappa, R. B., Zaidi, S. S.-e.-A., Hirsch-Hoffmann, M., Gruissem, W., & Vanderschuren, H. (2019). Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome biology, 20(1), 1-10.
- Navarro-Serna, S., Vilarino, M., Park, I., Gadea, J., & Ross, P. J. (2020). Livestock gene editing by one-step embryo manipulation. Journal of Equine Veterinary Science, 89, 103025.
- Okoli, A. S., Blix, T., Myhr, A. I., Xu, W., & Xu, X. (2021). Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Research, 1-21.
- Peng, J., Wang, Y., Jiang, J., Zhou, X., Song, L., Wang, L., Ding, C., Qin, J., Liu, L., & Wang, W. (2015). Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Scientific reports, 5(1), 1-6.
- Powles, S. B., & Yu, Q. (2010). Evolution in action: plants resistant to herbicides. Annual review of plant biology, 61, 317-347.
- Qin, X., Li, W., Liu, Y., Tan, M., Ganal, M., & Chetelat, R. T. (2018). A farnesyl pyrophosphate synthase gene expressed in pollen functions in S‐RN ase‐independent unilateral incompatibility. The Plant Journal, 93(3), 417-430.
- Ryczek, N., Hryhorowicz, M., Zeyland, J., Lipiński, D., & Słomski, R. (2021). CRISPR/Cas technology in pig-to-human xenotransplantation research. International Journal of Molecular Sciences, 22(6), 3196.
- Schmidt, C., Pacher, M., & Puchta, H. (2019). Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. The Plant Journal, 98(4), 577-589.
- Shen, B., Zhang, J., Wu, H., Wang, J., Ma, K., Li, Z., Zhang, X., Zhang, P., & Huang, X. (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell research, 23(5), 720-723.
- Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X., Xin, G., Wang, J., Wang, X., & Yan, C. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences, 60(5), 506-515.
- Singh, P., & Ali, S. A. (2021). Impact of CRISPR-Cas9-based genome engineering in farm animals. Veterinary Sciences, 8(7), 122.
- Sung, Y. H., Kim, J. M., Kim, H.-T., Lee, J., Jeon, J., Jin, Y., Choi, J.-H., Ban, Y. H., Ha, S.-J., & Kim, C.-H. (2014). Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome research, 24(1), 125-131.
- Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences, 108(50), 20260-20264.
- Tu, Z., Yang, W., Yan, S., Guo, X., & Li, X.-J. (2015). CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Molecular neurodegeneration, 10(1), 1-8.
- Vandana, C., Aravindakshan, T., & Kathiravan, R. (2021). Genome editing in animals-past, present and future: A.
- West, J., & Gill, W. W. (2016). Genome editing in large animals. Journal of Equine Veterinary Science, 41, 1-6.
- Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., & Li, J. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell, 13(6), 659-662.
- Yao, L., Zhang, Y., Liu, C., Liu, Y., Wang, Y., Liang, D., Liu, J., Sahoo, G., & Kelliher, T. (2018). OsMATL mutation induces haploid seed formation in indica rice. Nature plants, 4(8), 530-533.
- Zhang, H., Demirer, G. S., Zhang, H., Ye, T., Goh, N. S., Aditham, A. J., Cunningham, F. J., Fan, C., & Landry, M. P. (2019). DNA nanostructures coordinate gene silencing in mature plants. Proceedings of the national academy of sciences, 116(15), 7543-7548.
- Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K. J., Yang, B., & Li, W. (2019). Development of an Agrobacterium‐delivered CRISPR/Cas9 system for wheat genome editing. Plant biotechnology journal, 17(8), 1623-1635.
- Zhou, X., Xin, J., Fan, N., Zou, Q., Huang, J., Ouyang, Z., Zhao, Y., Zhao, B., Liu, Z., & Lai, S. (2015). Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cellular and molecular life sciences, 72(6), 1175-1184.
- Zhu, H., Li, C., & Gao, C. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21(11), 661-677.
- Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., Freschi, L., Voytas, D. F., Kudla, J., & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature biotechnology, 36(12), 1211-1216.
- Zuo, E., Huo, X., Yao, X., Hu, X., Sun, Y., Yin, J., He, B., Wang, X., Shi, L., & Ping, J. (2017). CRISPR/Cas9-mediated targeted chromosome elimination. Genome biology, 18(1), 1-18.