• The International Journal of Biological Research (TIJOBR)- Published Quarterly
  • The International Journal of Global Sciences (TIJOGS) -Published Quarterly

Empirical study on near field communication (NFC)

The International Journal of Global Sciences (TIJOGS)


Mudassara Perveen

Department of computer science, Government college university of Faisalabad.

*Corresponding author: mudassaraperveen123@gmail.com 

Submitted Accepted Published
Oct 15,2022 Nov 19,2022 Dec 10,2022

2022 / Vol: 4 / Issue: 2


Abstract: Near Field Communication (NFC) as a promising short range wireless communication technology facilitates mobile phone usage of billions of people throughout the world that offers diverse services ranging from payment and loyalty applications to access keys for offices and houses. Eventually NFC technology integrates all such services into one single mobile phone. NFC technology has emerged lately, and consequently not much academic source is available yet. On the contrary, due to its promising business case options, there will be an increasing amount of work to be studied in the very close future. This paper presents the concept of NFC technology in a holistic approach with different perspectives, including communication essentials with standards, ecosystem and business issues, applications, and security issues. Open research areas and further recommended studies in terms of academic and business point of view are also explored and discussed at the end of each major subject’s subsection. This comprehensive survey will be a valuable guide for researchers and academicians as well as for business world interested in NFC technology. 

Keywords: Near field communication NFC Survey, Communication essentials, NFC Security Applications, Application development, secure element.


1.Coskun, V., Ozdenizci, B., & Ok, K. (2013). A survey on near field communication (NFC) technology. Wireless personal communications, 71(3), 2259-2294.

  1. Finkenzeller, K. (2010). RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. John wiley & sons.
  2. Near Field Communications Forum. Available online: http://nfc-forum.org (accessed on 28 August 2018).
  3. Coskun, V., Ozdenizci, B., & Ok, K. (2013). A survey on near field communication (NFC) technology. Wireless personal communications, 71(3), 2259-2294.
  4. Ozdenizci, B., Coskun, V., & Ok, K. (2015). NFC internal: An indoor navigation system. Sensors, 15(4), 7571-7595.
  5. Carré, F., Caudeville, J., Bonnard, R., Bert, V., Boucard, P., & Ramel, M. (2017). Soil contamination and human health: a major challenge for global soil security. In Global soil security (pp. 275-295). Springer, Cham.
  6. Yildiz, F. (2009). Potential Ambient Energy-Harvesting Sources and Techniques. Journal of technology Studies, 35(1), 40-48.
  7. Kim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., & Tentzeris, M. M. (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649-1666.
  8. Wireless Power Consortium. (2017). Introduction to the power class 0 specification. Version, 1(3), 16.
  9. Choi, B., Nho, J., Cha, H., Ahn, T., & Choi, S. (2004). Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device. IEEE Transactions on Industrial Electronics, 51(1), 140-147.
  10. Musavi, F., Edington, M., & Eberle, W. (2012, September). Wireless power transfer: A survey of EV battery charging technologies. In 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 1804-1810). IEEE.
  11. Vijayaraman, B. S., & Osyk, B. A. (2006). An empirical study of RFID implementation in the warehousing industry. The International Journal of Logistics Management.
  12. Lazaro, A., Girbau, D., & Salinas, D. (2009). Radio link budgets for UHF RFID on multipath environments. IEEE transactions on antennas and propagation, 57(4), 1241-1251.
  13. Björninen, T., Sydänheimo, L., Ukkonen, L., & Rahmat-Samii, Y. (2014). Advances in antenna designs for UHF RFID tags mountable on conductive items. IEEE Antennas and Propagation Magazine, 56(1), 79-103.
  14. Marrocco, G. (2010). Pervasive electromagnetics: Sensing paradigms by passive RFID technology. IEEE Wireless Communications, 17(6), 10-17.
  15. Babar, A. A., Manzari, S., Sydanheimo, L., Elsherbeni, A. Z., & Ukkonen, L. (2012). Passive UHF RFID tag for heat sensing applications. IEEE Transactions on Antennas and propagation, 60(9), 4056-4064.
  16. Fernández-Salmerón, J., Rivadeneyra, A., Martínez-Martí, F., Capitán-Vallvey, L. F., Palma, A. J., & Carvajal, M. A. (2015). Passive UHF RFID tag with multiple sensing capabilities. Sensors, 15(10), 26769-26782.
  17. De Donno, D., Catarinucci, L., & Tarricone, L. (2014). RAMSES: RFID augmented module for smart environmental sensing. IEEE Transactions on Instrumentation and Measurement, 63(7), 1701-1708. 
  18. Tedjini, S., Karmakar, N., Perret, E., Vena, A., Koswatta, R., & Rubayet, E. (2013). Hold the chips: Chipless technology, an alternative technique for RFID. IEEE Microwave Magazine, 14(5), 56-65.
  19. Lazaro, A., Ramos, A., Girbau, D., & Villarino, R. (2011). Chipless UWB RFID tag detection using continuous wavelet transform. IEEE Antennas and Wireless Propagation Letters, 10, 520-523.
  20. Costa, F., Genovesi, S., & Monorchio, A. (2012). A chipless RFID based on multiresonant high-impedance surfaces. IEEE transactions on microwave theory and techniques, 61(1), 146-153.
  21. Vena, A., Perret, E., & Tedjini, S. (2012). High-capacity chipless RFID tag insensitive to the polarization. IEEE Transactions on Antennas and Propagation, 60(10), 4509-4515.
  22. Issa, K., Alshoudokhi, Y. A., Ashraf, M. A., AlShareef, M. R., Behairy, H. M., Alshebeili, S., & Fathallah, H. (2018). A high-density L-shaped backscattering chipless tag for RFID bistatic systems. International Journal of Antennas and Propagation, 2018.
  23. Ramos, A., Girbau, D., Lazaro, A., & Villarino, R. (2015). Wireless concrete mixture composition sensor based on time-coded UWB RFID. IEEE Microwave and Wireless Components Letters, 25(10), 681-683.
  24. Girbau, D., Ramos, Á., Lazaro, A., Rima, S., & Villarino, R. (2012). Passive wireless temperature sensor based on time-coded UWB chipless RFID tags. IEEE Transactions on Microwave Theory and Techniques, 60(11), 3623-3632.
  25. Lazaro, A.; Villarino, R.; Costa, F.; Genovesi, S.; Gentile, A.; Buoncristiani, L.; Girbau, D
  26. Costa, F., Gentile, A., Genovesi, S., Buoncristiani, L., Lazaro, A., Villarino, R., & Girbau, D. (2018). A depolarizing chipless RF label for dielectric permittivity sensing. IEEE Microwave and Wireless Components Letters, 28(5), 371-373.
  27. Lazaro, A., Villarino, R., Costa, F., Genovesi, S., Gentile, A., Buoncristiani, L., & Girbau, D. (2018). Chipless dielectric constant sensor for structural health testing. IEEE Sensors Journal, 18(13), 5576-5585.
  28. Butler, P. (2012). U.S. Patent No. 8,326,224. Washington, DC: U.S. Patent and Trademark Office.
  29. Zhao, Y., Smith, J. R., & Sample, A. (2015, April). NFC-WISP: A sensing and computationally enhanced near-field RFID platform. In 2015 IEEE International Conference on RFID (RFID) (pp. 174-181). IEEE.
  30. Wikner, J. J., Zötterman, J., Jalili, A., & Farnebo, S. (2016, December). Aiming for the cloud-a study of implanted battery-free temperature sensors using NFC. In 2016 International Symposium on Integrated Circuits (ISIC) (pp. 1-4). IEEE.
  31. European Computer Manufacturers Association. (2004). ECMA340—Near Field Communication Interface and Protocol (NFCIP-1). European Computer Manufacturers Association: Geneva, Switzerland.
  32. Coskun, V., Ozdenizci, B., & Ok, K. (2015). The survey on near field communication. Sensors, 15(6), 13348-13405.
  33. Coskun, V., Ozdenizci, B., & Ok, K. (2015). The survey on near field communication. Sensors, 15(6), 13348-13405.
  34. International Organization for Standardization/International Electrotechnical Commission. (2001). ISO/IEC 14443 identification cards-contactless integrated circuit cards-proximity cards. ISO/IEC, 14443.
  35. Gossar, M., Stark, M., Gebhart, M., Pribyl, W., & Söser, P. (2011, February). Investigations to achieve very high data rates for proximity coupling devices at 13.56 MHz and NFC applications. In 2011 Third International Workshop on Near Field Communication (pp. 71-76). IEEE.
  36. Park, S., Park, S., Park, J., & Baek, D. (2012, May). Design of 13.56 MHz ASK transmitter for near field communication using a DLL architecture. In 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1760-1762). IEEE.
  37. Al-Kadi, G., van de Beek, R., Ciacci, M., Kompan, P., & Stark, M. (2012, January). A 13.56 Mbps PSK receiver for very high data rate 13.56 MHz smart card and NFC applications. In 2012 IEEE International Conference on Consumer Electronics (ICCE) (pp. 180-182). IEEE.
  38. Gebhart, M., Wobak, M., Merlin, E., & Chlestil, C. (2012, November). Active load modulation for contactless near-field communication. In 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA) (pp. 228-233). IEEE.
  39. Man, F., Shuqiang, X., & Lenan, W. U. (2013). Research on high-speed NFC transmission based on high-efficiency EBPSK modulation.
  40. Stark, M., & Gebhart, M. (2013, February). How to guarantee phase-synchronicity in active load modulation for NFC and proximity. In 2013 5th International Workshop on Near Field Communication (NFC) (pp. 1-6). IEEE.
  41. Kang, E. S., Hong, S. W., & Han, D. S. (2012, June). Improved speed near field communication with rotated QPSK constellation and hidden data transmission. In IEEE international Symposium on Broadband Multimedia Systems and Broadcasting (pp. 1-2). IEEE.
  42. Azad, U., & Wang, Y. E. (2013). Direct antenna modulation (DAM) for enhanced capacity performance of near-field communication (NFC) link. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(3), 902-910.

© Copy Rights
By Authors and RnD Journals.